Supplementary Material

Total Syntheses of (-)-Haemanthidine, (+)-Pretazettine and (+)-Tazettine

Steven W. Baldwin* and John S. Debenham[†]

Paul M. Gross Chemical Laboratory, Department of Chemistry Duke University, Durham, NC 27708

This section contains experimental procedures for the preparation of compounds **6-14** (including intermediate compounds) and **1**, **2**, and **3**, with selected analytical data. In addition pertinent crystallographic information is provided for intermediate **10** (21 pages).

General methods. All reactions were conducted under a dry argon atmosphere at room temperature unless otherwise specified. THF was distilled from sodium benzophenone ketyl. Dichloromethane, carbontetrachloride and acetonitrile were distilled from calcium hydride. Benzene and absolute ethanol were stored over 4Å molecular sieves. Solutions of compounds in organic solvents were dried over sodium sulfate prior to rotary evaporation. TLC plates were Kieselgel 60 F254 (Merck Art. 5554). Compounds were visualized on the TLC plate by charring with $H_2SO_4/EtOH/H_2O$ (1:10:10). Flash column chromatography was done with silica gel 60 (230-400 mesh, Merck). Optical rotations were determined at the sodium D line with a Perkin-Elmer 241 polarimeter. Mass spectra were recorded on a JEOL JMS-SX102A mass spectrometer operating at 3k resolution for low resolution fast atom bombardment (FAB) mass spectra or a Hewlett-Packard 5988A mass spectrometer using chemical ionization with ammonia as the reagent gas. FAB mass spectra were conducted using a *m*-nitrobenzyl alcohol matrix with xenon as the fast atom. Accurate mass measurements were made using FAB at 10k resolution. ¹H and ¹³C NMR spectra were recorded on a Varian Unity Inova-400 spectrometer. Abbreviations for NMR data are as follows: s= singlet, b= broad, d= doublet, m= multiplet, dd= doublet of doublets, t= triplet, ddd= doublet of doublets. Coupling constants are reported in Hertz and chemical shifts are in ppm on the delta scale. ¹H and ¹³C chemical shifts are reported relative to internal tetramethylsilane (0.00 ppm). ¹H integration data reflects the fact that most of the compounds reported herein are rotomeric, hemiaminal or hemiacetal isomer mixtures and is not normalized. Elemental analyses were conducted by Atlantic Microlab, Inc., P.O. Box 2288, Norcross, GA 30091.

(3S,4R)-3-Methyl-3,4-*O*-isopropylidene-5-hexenal dimethyl acetal (6). Methyl 6bromo-2,6-deoxy-3-methyl- α -D-allopyranoside¹ (19.31 g, 75.70 mmol) was dissolved in 2,2dimethoxypropane (186 mL, 1513 mmol) and treated with *p*-toluenesulfonic acid (360 mg, 1.89 mmol) before heating to 80 °C for 14 h. After cooling to room temperature the reaction was quenched with triethylamine (~1.5 mL). The solution was concentrated and the residue was purified by flash chromatography eluting with 8:92 ethyl acetate/petroleum ether affording the

2

bromo acetonide as an oil (21.90 g, 98%). The bromo acetonide (7.280 g, 24.66 mmol) was dissolved in methyl ethyl ketone (150 mL) before adding NaI (21.70 g, 144.8 mmol) and NaHCO₃ (60 mg, 0.71 mmol). The reaction was heated to 80 °C for 15 h and then concentrated. The syrup was dissolved in ethyl acetate (200 mL) and washed with 10% aqueous Na₂S₂O₃ (150 mL) back extracting the aqueous portion with ethyl acetate $(2 \times 75 \text{ mL})$. The resultant organic solution was concentrated (not dried) and the iodide dissolved in ethanol (158 mL, 95%). Activated Zn (17.00 g, 260.1 mmol) was added to the solution and the temperature was elevated to 80 °C for 87 min. The reaction mixture was filtered through Celite® 545 and concentrated affording the aldehyde which was protected immediately. To the aldehyde was added CH(OCH₃)₃ (42.00 mL, 383.9 mmol) and Amberylyst[®] 15 resin (980 mg). The reaction stirred 15 h and was concentrated *in vacuo*. The acetal was purified by flash chromatography eluting with 10:90 ethyl acetate/petroleum ether affording 6 as an oil (4.716 g, 83% for three steps); $[\alpha]^{21}_{D}$ –49.5° (*c* 6.40, CCl₄); ¹H NMR (400 MHz, CDCl₃) δ 5.80 (ddd, *J* = 6.8, 10.6, 17.1 Hz, 1H), 5.40 (dd, *J* = 1.2, 17.3 Hz, 1H), 5.28 (dd *J* = 1.0, 10.6 Hz, 1H), 4.67 (dd *J* = 2.1, 7.7 Hz, 1H), 4.18 (d, J = 6.7 Hz, 1H), 3.34 (s, 3H), 3.30 (s, 3H), 1.83 (dd, J = 1.7, 14.0 Hz, 1H), 1.53 $(dd, J = 7.7, 14.2 Hz, 1H), 1.48 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H); {}^{13}C NMR (100 MHz, CDCl_3)$ δ 132.0, 118.5, 107.6, 101.9, 86.0, 80.9, 52.9, 51.5, 38.3, 28.0, 26.7, 23.0; HRMS (FAB) Calcd for (M-H)⁺ C₁₂H₂₁O₄: 229.1440, Found 229.1444; Anal. Calcd for C₁₂H₂₂O₄: C, 62.57; H, 9.63. Found: C, 62.66; H, 9.72.

(3S,4R)-3,4-O-Isopropylidene-3-methyl-5-(1,3-benzodioxol-5-yl)-pentan-5-one-1-al dimethyl acetal (7). O₃ was bubbled through a solution of 6 (5.052 g, 21.94 mmol) and NaHCO₃ (16.70 g, 198.7 mmol) in 2:1 CH₂Cl₂/methanol (100 mL) at -78 °C for 19 min until a dark blue color persisted. Bubbling continued for an additional 40 min and then the O₃ was purged from the vessel with O₂. Dimethyl sulfide (20.0 mL, 272.3 mmol) was added to the solution at -78 °C and the solution stirred 17 h warming to room temperature. The solution was filtered through Celite® 545 and concentrated. Purification of the aldehyde was accomplished *via* flash chromatography eluting with 35:65 ethyl acetate/petroleum ether affording the aldehyde

as an oil (4.170 g, 82%). The aldehyde (4.160 g, 17.91 mmol) in tetrahydrofuran (50 mL) was canulated into a solution of freshly prepared aryl Grignard {Mg (916 mg, 37.7 mmol) in tetrahydrofuran (19 mL) was treated to 4-bromo-1,2,-(methylenedioxybenzene) (5.13 mL, 42.60 mmol) and stirred until all of the Mg metal had been dissolved (70 min) at 0 °C. The Grignard reaction was stirred 100 min warming to room temperature before being quenched with saturated aqueous NH₄Cl solution (20 mL). The solution was diluted with ethyl acetate and the layers were separated. The remaining aqueous portion was extracted with ethyl acetate $(3 \times 30 \text{ mL})$. The combined organic layers were washed with saturated aqueous NH₄Cl solution (50 mL) back extracting the aqueous phase with ethyl acetate (50 mL). The resultant organic solution was concentrated *in vacuo*. The residue was then dissolved in CH₂Cl₂ (100 mL) before adding 4Å sieves (10.7 g), acetic anhydride (3.95 mL, 41.9 mmol) and pyridinium dichromate (7.88 g, 20.9 mmol). The reaction mixture was stirred 6 h, diluted with ethyl acetate (100 mL) and then filtered through Celite 545. After washing the solution with saturated aqueous NaHCO₃ (2 × 100 mL), and back extracting the aqueous portions $(2 \times 75 \text{ mL})$, the solvent was removed in *vacuo*. The aryl ketone was purified by flash chromatography eluting with 20:80 ethyl acetate/petroleum ether affording 7² (3.441 g, 70% for two steps); $[\alpha]^{21}_{D}$ –31.5° (*c* 0.78, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 1.7, 8.2 Hz, 1H), 7.51 (d, J = 1.7 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.05 (dd, J = 1.4, 1.9 Hz, 2H), 4.88 (s, 1H), 4.61 (dd, J = 2.4, 7.5 Hz, 1H), 3.27 (s, 3H), 3.20 (s, 3H), 1.87 (dd, *J* = 1.9, 14.2 Hz, 1H), 1.59 (s, 3H), 1.50 (s, 3H), 1.47 (s, 3H), 1.45 (dd, J = 7.5, 14.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 152.0, 148.0, 131.0, 125.4, 108.7, 107.7, 101.8, 101.7, 86.6, 81.5, 53.1, 51.7, 38.7, 28.0, 26.8, 25.1; HRMS (FAB) Calcd for (M-H)⁺ C₁₈H₂₃O₇: 351.1444, Found 351.1435; Anal. Calcd for C₁₈H₂₄O₇: C, 61.35; H, 6.86. Found: C, 61.43; H, 6.84.

(2E,4R,5S)-3-(1,3-benzodioxole-5-yl)-7,7-dimethoxy-4,5-O-isopropylidene-5methyl-2-heptenoate (8) To freshly prepared lithium diisopropylamide {diisopropylamine (955 µL, 6.80 mmol) in tetrahydrofuran (15 mL) treated with *n*-butyllithium (2.72 mL, 2.5 M in hexanes, 6.80 mmol) at -78 °C dropwise and stirred for 15 min} was added ethyl (trimethylsilyl)acetate (1.25 mL, 6.80 mmol) dropwise at -78 °C. The reaction was stirred 15 min before 7 (1.840 g, 5.228 mmol) in tetrahydrofuran (18 mL) was added dropwise over 30 min at -78 °C. The reaction warmed to -50 °C over 3 h and was then quenched with saturated aqueous NH₄Cl (30 mL). The solution volume was diluted to 100 mL with ethyl acetate and the layers were separated. After extracting the aqueous portion with ethylacetate (4 × 30 mL), the combined organic portions were concentrated, and the product was purified *via* flash chromatography eluting with 18:82 ethyl acetate/petroleum ether affording the alkenes as a clear viscous oil (2.110 g, 96%, 1.5:1 Z/E).

Typical Isomerization: A mixture of alkenes (1.343 g, 3.180 mmol, 2.8:1 Z/E) in benzene (10 mL) was degassed before adding 2,2'azobisisobutyronitrile (AIBN) (261 mg, 1.59 mmol) and thiophenol (163 μ L, 1.59 mmol). The reaction was heated to 80 °C for 11.5 h at which point the benzene was removed *in vacuo*, and the residue was purified *via* flash chromatography eluting with 15 \rightarrow 25% ethyl acetate/petroleum ether affording the Z-alkene (99.9 mg, 7.4%) and the E-Alkene **8** (1.173 g, 87.3%) [1:11.7 Z/E isomerized ratio of alkenes)

Average throughput: By executing two Peterson olefinations as above on 7 (5.390 g, 15.30 mmol total) and three isomerizations (total) afforded **8** (6.042 g, 93%); $[\alpha]^{21}_{D}$ +20.6° (*c* 0.94, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.65-6.77 (m, 3H), 6.29 (d, *J* = 1.7 Hz, 1H), 5.98 (dd, *J* = 1.4, 3.1 Hz, 2H), 4.61 (approx. dd, *J* = 1.7, 8.0 Hz, 2H), 3.99-4.11 (m, 2H), 3.32 (s, 3H), 3.27 (s, 3H), 1.87 (dd, *J* = 1.0, 14.0 Hz, 1H), 1.52 (s, 3H), 1.46 (dd, *J* = 7.9, 14.0 Hz, 1H), 1.43 (s, 3H), 1.12 (t, *J* = 7.0 Hz, 3H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 150.1, 147.8, 147.3, 129.6, 121.9, 118.0, 108.8, 108.0, 107.3, 102.3, 101.2, 86.6, 80.6, 59.9, 53.1, 52.6, 37.9, 28.2, 27.0, 24.3, 14.0; HRMS (FAB) Calcd for (M-H)⁺ C₂₂H₂₉O₈: 421.1862, Found 421.1853; Anal. Calcd for C₂₂H₃₀O₈: C, 62.55; H, 7.16. Found: C, 62.45; H, 7.09.

(3bR,6aS)-Hexahydro-5,5-dimethyl-*N*-[(*S*)- α -methylbenzyl]-6a-methyl-3a-(1,3benzodioxole-5-yl)-3-carboethoxy-[1,3]dioxolo[3,4]cyclopent[1,2-c]isoxazole (9). The Ealkene 8 (400.0 mg, 0.9468 mmol) in acetone (25 mL, containing 0.4% H₂O) was treated to Amberlyst® 15 resin (80 mg) for 12 h at 42 °C at which point the reaction was complete as

determined by ¹H NMR analysis of a small aliquot. The acetone was removed *in vacuo*, and the residue was purified via flash chromatography eluting with 20:80 ethyl acetate/petroleum ether affording the aldehyde as a sticky foam (322.1 mg, 90%). To the aldehyde (345.0 mg, 0.9166 mmol) in benzene (10 mL) was added (S)- α -methylbenzyl hydroxylamine oxylate³ (229 mg, 1.01 mmol) and anhydrous K₂CO₃ (253 mg, 1.83 mmol). The reaction was stirred 18 h and was filtered through Celite® 545. The concentrated filtrate was then dissolved in benzene 10 mL and heated to 55 °C for 12 h and then 80 °C for an additional 5 h. The benzene was removed in vacuo, and the residue was purified via flash chromatography eluting with 15:85 ethyl acetate/petroleum ether affording 9, the major component of a 12:1 mixture, as a white foam $(340.5 \text{ mg}, 75\%); [\alpha]^{21}_{D} - 65.4^{\circ} (c \ 0.98, \text{CHCl}_3); ^{1}\text{H NMR} (400 \text{ MHz}, \text{DMSO-d}_6, 100 ^{\circ}\text{C}) \delta$ 7.46-7.50 (m, 2H), 7.20-7.34 (m, 3H), 6.92-7.00 (m, 2H), 6.79 (d, J = 8.2 Hz, 1H), 5.94 (dd, J =1.0, 11.1 Hz, 2H), 4.70 (s, 1H), 4.40 (s, 1H), 4.27 (dd, *J* = 4.7, 7.5 Hz, 1H), 3.94-4.64 (m, 1H), 3.61-3.72 (m, 1H), 2.03 (dd, J = 7.7, 14.2 Hz, 1H), 1.86 (dd, J = 4.4, 14.4 Hz, 1H), 1.59 (s, 3H), 1.38 (d, J = 6.5 Hz, 3H), 1.31 (s, 3H), 1.09 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 53 °C) & 168.9, 146.7, 146.2, 142.9, 132.1, 128.3, 127.5, 127.4, 122.9, 110.5, 109.9, 107.5, 107.1, 101.0, 100.8, 89.5, 88.7, 83.4, 69.4, 60.6, 29.7, 27.9, 27.1, 26.7, 22.2, 13.8; HRMS (FAB) Calcd for M⁺ C₂₈H₃₃NO₇: 495.2257, Found 495.2249; Anal. Calcd for C₂₈H₃₃NO₇: C, 67.86; H, 6.71; N, 2.83. Found: C, 67.70; H, 6.75; N, 2.74.

Lactam (10). To a Fisher-Porter tube was added 9 (3.397 g, 6.855 mmol) in 1:1 tetrahydrofuran/methanol (35 mL) which was degassed before adding 10 % Pd/C (3 g). The vessel was evacuated and pressurized with H₂ at 55 psi (6×). The reaction stirred 1 week and was then filtered through Celite® 545. The concentrated residue was purified *via* flash chromatography eluting with 10:90 methanol/CH₂Cl₂ affording 10 as a white solid (2.269 g, 95%); $[\alpha]^{21}_{D}$ +86.6° (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.93 (d, *J* = 1.5 Hz, 1H), 6.74-6.82 (m, 2H), 6.56 (s, 1H), 5.95 (dd, *J* = 1.5, 2.4 Hz, 2H), 4.90 (s, 1H), 4.46 (dd, *J* = 3.1, 6.0 Hz, 1H), 4.40 (s, 1H), 4.17 (bs, 1H), 2.55 (dd, *J* = 6.2, 14.5 Hz, 1H), 2.05 (dd, *J* = 3.3, 14.4 Hz, 1H), 1.53 (s, 3H), 1.30 (s, 3H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 147.5,

146.2, 134.4, 120.2, 112.2, 109.0, 107.6, 101.0, 90.3, 87.2, 77.7, 61.8, 61.4, 46.8, 28.0, 27.5, 27.2; HRMS (FAB) Calcd for M⁺ C₁₈H₂₁NO₆: 347.1369, Found 347.1376; Anal. Calcd for C₁₈H₂₁NO₆: C, 62.24; H, 6.09; N, 4.03. Found: C, 62.27; H, 6.17; N, 4.03.

A sample for x-ray analysis was recrystallized from THF/hexane to afford long colorless needles, mp 238-42°C.

Formamide (11).⁴ To 10 (1.060 g, 3.052 mmol) in tetrahydrofuran (40 mL) was added LiAlH₄ in THF (12.2 mL, 1.0 M) the reaction was then heated to 60 °C for 2 h. After cooling the reaction to room temperature it was guenched with H₂O (1 mL), aqueous NaOH (1 mL, 6 M) and H_2O (2 mL). The solution was then decanted from the precipitate, and the salts were washed with tetrahydrofuran (4×65 mL). The combined organic portions were concentrated in *vacuo*. The amine was dissolved in tetrahydrofuran (35 mL) and then canulated into a freshly prepared solution of acetic formic anhydride {To acetic anhydride (2.30 mL, 24.4 mmol) was added formic acid (1.11 mL, 29.3 mmol) the reaction was heated to 60 °C for 2 h and then diluted with tetrahydrofuran (3 mL)} at -60 °C. The reaction was stirred 15 min, warming to -20 °C, at which point it was quenched with methanol (3 mL). The solution was concentrated and the residue was dissolved in $CH_2Cl_2(120 \text{ mL})$ and washed with aqueous NaOH (2 × 50 mL, 1 M). The combined aqueous phases were back extracted with CH_2Cl_2 (2 × 50 mL). The resultant organic solution was concentrated and the residue was dissolved in pyridine (21 mL) before adding 4-dimethylaminopyridine (460 mg, 3.77 mmol) and pivaloylchloride (7.50 mL, 61.0 mmol). The solution was heated to 80 °C for 24 h and then concentrated. The residue was dissolved in CH_2Cl_2 (100 mL) and washed with aqueous HCl (2 × 30 mL, 2.5%) back extracting the aqueous phase with CH_2Cl_2 (2 × 15 mL). The resultant organic solution was washed with aqueous NaOH (45 mL, 1 M) back extracting the aqueous phase with CH_2Cl_2 (2 × 15 mL). The combined organic portions were concentrated and purified via flash chromatography eluting with 65:35 ethyl acetate/petroleum ether affording **11** as a white foam (1.016 g, 75%); $[\alpha]^{21}_{D}$ +30.6° (c 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) & 8.45 (s, 0.57H), 8.21 (s, 0.36H), 6.60-6.78 (m, 3H), 5.96-5.97 (m, 2H), 5.25 (d, J = 4.6 Hz, 0.51H), 5.17 (d, J = 4.4 Hz, 0.35H), 5.08 (t, J = 8.5

Hz, 0.41H), 4.92 (dd, J = 7.7, 9.6 Hz, 0.6H), 4.69 (d, J = 2.2 Hz, 0.84H), 3.77 (dd, J = 4.4, 12.7 Hz, 0.42H), 3.63 (dd, J = 4.3, 14.7 Hz, 0.55H), 3.52 (dd, J = 6.2, 14.6 Hz, 0.86H), 2.90 (dd, J = 7.4, 13.7 Hz, 0.4H), 2.59 (dd, J = 7.5, 13.3 Hz, 0.58H), 2.00 (dd, J = 9.9, 13.3 Hz, 0.64H), 1.77 (dd, J = 9.7, 13.5 Hz, 0.4H), 1.60 (2s, 3H), 1.35 and 1.40 (2s, 3H), 1.27 and 1.26 (2s, 9H), 0.86 and 0.83 (2s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 177.6, 160.5, 160.4, 147.7, 147.6, 146.6, 146.5, 133.3, 133.0, 120.6, 120.2, 111.0, 109.3, 109.2, 107.8, 107.7, 101.1 (2C), 91.3, 91.0, 85.6, 85.4, 81.2, 80.8, 63.7, 63.5, 61.9, 52.3, 50.8, 44.3, 42.4, 38.9, 38.8, 29.3 (2C), 27.4 (2C), 27.1 (2C), 24.6, 24.4; HRMS (FAB) Calcd for MH⁺ C₂₄H₃₂NO₇: 446.2179, Found 446.2193.

Ketoaldehyde (12). To 11 (1.107 g, 2.485 mmol) was added trifluoroacetic acid (12 mL) and H₂O (0.84 mL). The reaction was stirred 10 h and the trifluoroacetic acid was removed in vacuo. The residue was dissolved in CH₂Cl₂ (2 mL) and triethylamine (0.5 mL) was added dropwise before applying this solution directly to a silica gel column eluting with $60 \rightarrow 75\%$ ethyl acetate/petroleum ether affording the diol as a white foam (964.2 mg, 96%). The diol (117.0 mg, 0.2886 mmol) in 2:1 THF/H₂O (3 mL) was treated to NaIO₄ (198 mg, 0.926 mmol) for 22 h before diluting the solution with ethyl acetate (20 mL). The solution was decanted from the salts and the salts were washed with ethyl acetate $(3 \times 10 \text{ mL})$. The combined organic solution was concentrated and the residue was purified via flash chromatography eluting with 25:75 ethyl acetate/CH₂Cl₂ affording **12** as a white foam (108.9 mg, 94%); $[\alpha]^{21}_{D}$ +104.1° (*c* 0.91, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.43 (s, 0.27H), 9.39 (s, 0.73H), 8.19 (s, 0.73H), 8.14 (s, 0.27H), 6.77-6.92 (m, 3H), 6.06 (d, J = 5.6 Hz, 0.82H), 6.00 (d, J = 1.9 Hz, 2H), 5.78 (d, J = 2.8 Hz, 0.27H), 5.34 (dd, J = 3.8, 7.4 Hz, 0.3H), 5.05 (dd, J = 4.3, 7.5 Hz, 0.76H), 4.50 (dd, J = 5.8, 14.5 Hz, 0.82H), 3.84 (dd, J = 5.1, 11.8 Hz, 0.28H), 3.60 (dd, J = 1.5, 11.8 Hz, 0.28H), 3.45 (dd, J =4.4, 18.3, 0.73H), 3.35 (d, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 8.0, 17.8 Hz, 0.27H), 3.11 (dd, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 14.5 Hz, 0.27H), 3.11 (dd, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 14.5 Hz, 0.27H), 3.11 (dd, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 14.5 Hz, 0.27H), 3.11 (dd, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 14.5 Hz, 0.27H), 3.11 (dd, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 14.5 Hz, 0.76H), 3.22 (dd, J = 14.5 Hz, 0.27H), 3.11 3.6, 17.4 Hz, 0.27H), 2.92 (dd, J = 7.9, 18.5 Hz, 0.75H), 2.23 (s, 3H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) & 205.7, 205.3, 194.9, 193.9, 177.2, 177.0, 161.8, 160.7, 149.0, 148.9, 148.2, 148.0, 127.9, 126.8, 120.9, 109.1, 109.0, 107.7, 107.4, 101.7, 101.6, 75.9, 74.7, 65.8, 64.8, 59.3,

56.2, 50.1, 49.0, 45.6, 44.3, 38.7, 30.5, 29.9, 26.9 (2C); HRMS (FAB) Calcd for MH⁺ C₂₁H₂₆NO₇: 404.1709, Found 404.1722.

(*3R*,3*aS*,7*aS*)-*N*-Formal-3-(pivaloyloxy)-3a-[3,4-(methylenedioxy)phenyl]-2,3,3*a*,6,7,7*a*-hexahydroindol-6-one (13). A solution of 12 (105.0 mg, 0.2603 mmol) in benzene (1.5 mL) was treated with acetic acid (14.9 μL, 0.2603 mmol) and pyrrolidine (21.7 μL, 0.2603 mmol). The solution was stirred for 11 h and was applied directly to a silica gel column eluting with 50:50 ethyl acetate/CH₂Cl₂ providing 12 (58.0 mg, 58%); $[\alpha]^{21}_{D}$ +152.4° (*c* 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 0.5H), 8.21 (s, 0.5H), 6.80-6.94 (m, 4H), 6.27 (dd, *J* = 10.4, 14.4 Hz, 1H), 6.00 and 5.99 (2s, 2H), 5.71 (dd, *J* = 5.0, 6.7 Hz, 0.5H), 5.57 (t, *J* = 6.7 Hz, 0.5H), 4.67 (t, *J* = 5.3 Hz, 0.5H), 4.53 (dd, *J* = 5.3, 8 Hz, 0.5H), 4.14 (dd, *J* = 6.7, 13.2 Hz, 0.5H), 4.04 (dd, *J* = 6.5, 10.8 Hz, 0.5H), 3.34-3.42 (m, 1H), 3.15 (dd, *J* = 6.3, 17.3 Hz, 0.5H), 2.98 (dd, *J* = 8.0, 16.8 Hz, 0.5H), 2.84 (dd, *J* = 3.3, 5.0 Hz, 0.5H), 2.79 (dd, *J* = 3.9, 5.1 Hz, 0.5H), 1.16 and 1.15 (2s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 195.3, 177.6, 177.4, 161.7, 160.2, 148.8, 147.7, 146.6, 146.1, 131.4, 131.0, 130.4, 119.9, 108.8, 108.7, 106.8, 101.6 (2C), 75.3, 75.1, 61.2, 59.2, 53.6, 52.5, 49.0, 48.1, 40.7, 38.8, 38.7, 37.3, 27.0; HRMS (FAB) Calcd for M⁺ C₂₁H₂₃NO₆: 385.1525, Found 385.1537.

(3*R*,3a*S*,6*S*,7a*S*,)-*N*-Formyl-3-(pivaloyloxy)-3a-[3,4-(methylenedioxy)phenyl]-6methoxy-2,3,3a,6,7,7a-hexhydroindole (14). To 13 (219.0 mg, 0.5682 mmol) in methanol (10 mL) was added CeCl₃•7H₂O (211.7 mg, 0.5682 mmol) before cooling the solution to -78 °C and adding NaBH₄ (53.0 mg, 1.40 mmol).⁵ After stirring for 8 min, the reaction was quenched with H₂O (0.5 mL) and warmed to room temperature. The solution was concentrated, and the residue was dissolved in CH₂Cl₂ (50 mL) and washed with H₂O (25 mL) back extracting the aqueous phase with CH₂Cl₂ (3 × 15 mL). The combined organic portions were concentrated and the residue was purified *via* flash chromatography eluting with ethyl acetate affording a 6:1 (β : α) mixture of allylic alcohols (209.9 mg, 95%). To the alcohols (207.0 mg, 0.5343 mmol) in THF (4 mL) was added triethylamine (427.0 μ L, 3.065 mmol) and methanesulfonic anhydride (534.0 mg,

3.065 mmol) in THF (3.5 mL) at 0 °C. After completion of the mesylation (30 min), the reaction temperature was lowered to -78 °C before adding anhydrous methanol (42 mL) dropwise. The reaction was warmed to -22 °C and proceeded for 105 h before warming again to 0 °C. The reaction continued for an additional 62 h at which point it was guenched with saturated aqueous NaHCO₃ (2 mL) and concentrated. The residue was dissolved in CH₂Cl₂ (50 mL) and washed with aqueous NaOH (15 mL, 1 M) back extracting the aqueous phase with CH_2Cl_2 (3 × 15 mL). The combined organic portions were concentrated and the residue was purified via flash chromatography eluting with 70:30 ethyl acetate/petroleum ether affording a 1:12 (β : α) mixture of allylic methyl ethers as a white foam (109.3 mg, 51%); $[\alpha]^{21}_{D}$ +99.3° (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 0.62H), 8.24 (s, 0.38H), 6.74-6.92 (m, 3H), 6.20 (dd, *J*= 2.4, 10.4 Hz, 0.38H), 6.16 (dd, J= 4.1, 10.3 Hz, 0.62H), 5.96 and 5.95 (2s, 2H), 5.86 (dd, J= 0.7, 10.3 Hz, 0.62H), 5.66 (dd, J= 4.1, 6.4 Hz, 0.55H), 5.48 (t, J= 6.8 Hz, 0.42H), 4.36 (dd, J= 3.1, 6.3Hz, 0.45H), 4.32 (dd, J= 4.3, 9.6 Hz, 0.55H), 3.98-4.07 (m, 1H), 3.82-3.89 (m, 1H), 3.41 and 3.40 (2s, 3H), 2.60-2.68 (m, 0.38H), 2.22-2.30 (m, 1H), 2.02-2.10 (m, 1H), 1.80-1.88 (m, 0.62H), 1.15 and 1.14 (2s, 9H); ¹³C NMR (100 MHz, CDCl₃) & 177.8, 177.4, 161.5, 160.6, 148.2, 148.1, 146.9, 134.4, 133.9, 131.5, 130.5, 128.3 (2C), 120.0, 119.7, 108.3, 108.2, 107.3, 101.3, 101.2, 75.0, 74.9, 71.5, 71.1, 59.0, 58.6, 56.5, 56.4, 53.3, 51.9, 48.7, 47.9, 38.8, 38.6, 31.7, 27.1, 27.0, 26.5; HRMS (FAB) Calcd for M⁺ C₂₂H₂₇NO₆: 401.1838, Found 401.1838.

11-O-Pivaloylhaemanthidine. To **14** (108.8 mg, 0.2710 mmol) in a 5 mL round bottom flask was added POCl₃ (1.14 mL, 12.2 mmol) at which point the flask was sealed with glass stopper and heated to 80 °C for 6h. The reaction was then cooled to room temperature and the POCl₃ was removed *in vacuo*. The residue was treated with 1:1 tetrahydrofuran/H₂O (4 mL) for 24 h at which point the THF was removed *in vacuo*. The residue was dissolved in CH₂Cl₂ (40 mL) and washed with aqueous NaOH (20 mL, 1 M) back extracting the aqueous phase with CH₂Cl₂ (3 × 10 mL). The combined organic portions were concentrated and the residue was purified *via* flash chromatography eluting with 5:95 methanol/ CH₂Cl₂ affording 11-*O*pivaloylhaemanthidine as a white foam (96.7 mg, 89%); $[\alpha]^{21}_{D}$ –28.1° (*c* 0.97, CHCl₃); ¹H NMR

10

(400 MHz, CDCl₃) δ 6.98 (s, 0.38H), 6.90 (s, 0.40H), 6.88 (s, 0.36H), 6.84 (s, 0.41H), 6.30 (d, *J* = 10.3 Hz, 1 H), 6.16 (ddd, *J* = 1.9, 5.0, 10.1 Hz, 1H), 5.90-5.94 (m, 2H), 5.72 (s, 0.52H), 5.09 (s, 0.55H), 4.84-4.89 (m, 1H), 4.23 (dd, *J* = 7.4, 14.5 Hz, 0.49H), 3.95 (dd, *J* = 5.0, 13.3 Hz, 0.59H), 3.79-3.85 (m, 1H), 3.60 (approx. dd, *J* = 7.5, 10.1 Hz, 0.50H), 3.38 and 3.34 (2s, 3H), 3.25-3.42 (m, 1H), 2.95 (dd, *J* = 2.9, 14.7 Hz, 0.51H), 1.97-2.17 (m, 2H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 177.3, 147.9, 147.6, 146.8, 146.7, 134.8, 133.6, 129.8, 129.4, 128.8, 127.4, 127.2, 126.8, 109.2, 107.8, 103.5, 103.4, 101.1, 101.0, 88.3, 85.8, 79.0, 78.2, 72.3, 72.2, 61.6, 56.7, 56.4, 56.3, 55.1, 49.8, 49.4, 49.2, 38.3, 2C, 27.9, 27.5, 27.2, 27.0; HRMS (FAB) Calcd for MH⁺ C₂₂H₂₈NO₆: 402.1917, Found 402.1919.

Haemanthidine (3). 11-O-Pivaloylhaemanthidine (20.0 mg, 0.0498 mmol) was treated with methanolic LiOH (3 mL, 1.4 M) for 31 h before removing the methanol *in vacuo*. The residue was dissolved in H₂O (4 mL), and the solution was extracted with CH₂Cl₂ (4 × 4 mL). The concentrated organic solution was purified *via* flash chromatography eluting with 14:86 methanol/ CH₂Cl₂ affording **3** as an opaque film (11.2 mg, 71%); $[\alpha]^{21}_{D}$ –24.9° (*c* 0.78, CHCl₃); {lit.⁶ [α]^{22}_{D} –41° (*c* 1, CHCl₃)}; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (s, 0.41H), 6.82 (s, 0.48H), 6.80 (s, 0.56H), 6.77 (s, 0.45H), 6.34-6.43 (m, 2H), 5.88-5.94 (m, 2H), 5.72 (s, 0.39H), 5.08 (s, 0.53H), 4.21 (dd, *J* = 6.8, 14.4 Hz, 0.52H), 3.84-3.94 (m, 3.47H), 3.61 (dd, *J* = 4.8, 13.4 Hz, 0.53H), 3.37 and 3.35 (2s, 3H), 3.22-3.37 (m, 1H), 2.96 (dd, *J* = 2.6, 14.4 Hz 0.42H), 2.34 (td, *J* = 4.3, 13.5 Hz, 0.46H), 2.19 (td, *J* = 4.5, 13.5 Hz, 0.54H), 2.00-2.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 147.6, 146.7, 146.5, 135.6, 134.2, 132.9, 132.4, 128.4, 127.4, 126.3, 126.1, 109.5, 108.3, 102.9, 102.8, 101.1, 88.4, 85.8, 78.8, 78.1, 72.4, 72.2, 61.7, 57.8, 56.9, 56.6, 56.3, 51.8, 50.7, 50.3, 27.5, 27.4; HRMS (FAB) Calcd for M⁺ C₁₇H₁₉NO₅: 317.1263, Found 317.1263.

Pretazettine (1). To **3** (8.5 mg, 0.027 mmol) in methanol (1.6 mL) was added methyl iodide (0.47 mL, 7.6 mmol). The reaction was stirred for 6 h before removing the methanol *in*

11

vacuo at which point the residue was treated with aqueous HCl (2 mL, 0.01 M) for 1 min and the pH of the solution was adjusted to pH 8 with saturated aqueous NaHCO₃ (ca. 5 drops). The solution was extracted with CH₂Cl₂ (7 × 4 mL), and the organic portions were combined, filtered and concentrated. Purification of the product was carried out *via* flash chromatography eluting with 30:3:67 methanol/triethylamine/CH₂Cl₂ affording **1** as a white film (8.4 mg, 95%); $[\alpha]^{21}_{D}$ +178.5° (*c* 0.65, CHCl₃); {lit.⁷ $[\alpha]^{24}_{D}$ +180⁰ (*c* 0.2, CHCl₃)}; ¹H NMR (400 MHz, CDCl₃) δ 6.86 (s, 1H), 6.77 (s, 1H), 6.12 (s, 1H), 5.93 (s, 2H), 5.89 (bd, *J* = 10.4 Hz, 1H), 5.52 (dt, *J* = 1.7, 10.4 Hz, 1H), 4.34 (dd, *J* = 8.1, 11.6 Hz, 1H), 4.12-4.19 (m, 1H), 3.44 (s, 3H), 2.93-3.02 (m, 2H), 2.64 (dd, *J* = 7.7, 9.7 Hz 1H), 2.50 (s, 3H), 2.48-2.53 (m, 1H), 1.77 (ddd, *J* = 1.9, 9.4, 13.3 Hz 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 146.5, 135.3, 129.1, 128.8, 127.4, 108.1, 104.8, 101.2, 93.9, 73.8, 73.1, 64.1, 56.1, 54.0, 46.2, 43.3, 30.2; HRMS (FAB) Calcd for M⁺ C₁₈H₂₁NO₅: 331.1420, Found 331.1410.

Tazettine (2). To **1** (19.2 mg, 0.0579 mmol) in methanol (1.5 mL) was added aqueous NaOH (1 mL, 0.1 M). The reaction was stirred for 30 min before removing the methanol *in vacuo*. The aqueous portion was extracted with CH₂Cl₂ (7 × 5 mL), and the organic portions were combined, filtered and concentrated. Purification of the product was carried out *via* flash chromatography eluting with 15:85 methanol/ CH₂Cl₂ affording tazettine (**2**) as a white film (17.5 mg, 91%); $[\alpha]^{21}_{D}$ +142.5° (*c* 0.98, CHCl₃); {lit.⁸ $[\alpha]^{16}_{D}$ +150⁰ (CHCl₃)}; ¹H NMR (400 MHz, CDCl₃) δ ¹H 6.86 (s, 1H), 6.50 (s, 1H), 6.14 (dt, *J* = 1.4, 10.4 Hz, 1H), 5.90 (s, 2H), 5.61 (dt, *J* = 1.8, 10.4 Hz, 1H), 4.96 (dd, *J* = 0.5, 14.7, 1H), 4.63 (d, *J* = 14.7 Hz, 1H), 4.11-4.17 (m, 1H), 3.46 (s, 3H), 3.30 (d, *J* = 10.6 Hz, 1H), 2.85-2.89 (m, 1H), 2.68 (d, *J* = 10.6 Hz, 1H), 2.40 (s, 3H), 2.19-2.27 (m, 1H), 1.63 (ddd, *J* = 2.2, 10.1, 13.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 146.4, 130.6, 128.7, 128.0, 125.5, 109.3, 104.0, 102.0, 100.9, 72.9, 70.0, 65.5, 62.0, 56.1, 49.9, 42.0, 26.7; HRMS (FAB) Calcd for M⁺ C₁₈H₂₁NO₅: 331.1420, Found 331.1421.

References and Notes:

- (†) Present Address: Eastman Chemical Company, Research Laboratories, P. O. Box 1972, B-150B, Kingsport TN 37662-5150
- The preparation of diol 5 could be accomplished by scale-up of the chemistry reported in the following references. Starting with α-methyl-D-mannopyranoside, 5 could be prepared in five steps in 55% overall yield. (a) Horton, D.; Weckerle, W. *Carbohydr. Res.* 1975, *44*, 227. (b) Thiem, J.; Elvers, J. *Chem. Ber.* 1981, *114*, 1442. (c) Krohn, K.; Broser, E.; Heins, H. *Carbohydr. Res.* 1987, *164*, 59.
- 2. Ketone 7 is particularly sensitive to even mildly acidic conditions and is best used directly after preparation.
- 3. Wovkulich, P. M.; Uskokovic, M. R. *Tetrahedron* **1985**, *41*, 3455. An improved preparation of this material will be reported in the full paper.
- 4. The NMR spectra of compounds **11-14**, and all intermediate materials, were complicated by the presence of amide rotational isomers (~3/2).
- (a) Luche, J. L.; Rodrigues, H. L.; Cragge, P. J. Chem. Soc., Chem. Commun. 1978, 601. (b) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
- 6. Boit, H.-G. Chem. Ber. 1954, 87, 1339.
- 7. Wildman, W. C.; Bailey, D. T. J. Org. Chem. 1968, 33, 3749.
- 8. Späth, E.; Kahovec, L. Chem. Ber. 1934, 67, 1501.

Total Syntheses of (-)-Haemanthidine, (+)-Pretazettine and (+)-Tazettine

Steven W. Baldwin* and John S. Debenham[†]

Paul M. Gross Chemical Laboratory, Department of Chemistry Duke University, Durham, NC 27708

Crystallographic Data for Compound 10

 $C_{18}H_{21}NO_6$

Colorless fine needles from THF/hexane. mp. 238-42°C. ; Anal. Calcd for $C_{18}H_{21}NO_6$: C, 62.24; H, 6.09; N, 4.03. Found: C, 62.27; H, 6.17; N, 4.03. Space Group and Cell Dimensions Orthorhombic $P 2_1 2_1 2_1$ 6.7137(4) b 12.4163(7) c 20.0684(11) а Volume 1672.89(17)A**3 Empirical formula : C18H21NO6 Cell dimensions were obtained from 5613 reflections with 2 angle 3.00 - 50.00 degrees. in the range Crystal dimensions : 0.35 X 0.15 X 0.15 mm FW =347.36 Z = 4 F(000) = 736.52 Dcalc 1.379Mg.m-3, mu 0.10mm-1, lambda 0.71073A, 2 max 50.0 The intensity data were collected on a Siemens SMART diffractometer, using the omega scan mode. The h,k,l ranges used during structure solution and refinement are :--Hmin, max -7 8; Kmin, max -14 14; Lmin, max -23 23 No. of reflections measured 16308 No. of unique reflections 2955 No. of reflections with Inet > 3.0sigma(Inet) 2760 Merging R-value on intensities 0.023 No correction was made for absorption The last least squares cycle was calculated with 46 atoms, 311 parameters and 2756 out of 2955 reflections. Weights based on counting-statistics were used. The residuals are as follows :--For significant reflections, RF 0.037, Rw 0.032 GoF 2.47 For all reflections, RF 0.042, Rw 0.033. where RF = Sum(Fo-Fc)/Sum(Fo), Rw = Sqrt[Sum(w(Fo-Fc)*2)/Sum(wFo*2)] and GoF = Sqrt[Sum(w(Fo-Fc)**2)/(No. of reflns - No. of params.)] The maximum shift/sigma ratio was 0.001. In the last D-map, the deepest hole was -0.190e/A**3, and the highest peak 0.210e/A**3. Secondary ext. coeff. 0.6212microns 0.0840 sigma The following references are relevant to the NRCVAX System. 1. Full System Reference : Gabe, E.J., Le Page, Y., Charland, J.-P., Lee, F.L. and White, P.S. (1989) J. Appl. Cryst., 22, 384-387. 2. Scattering Factors from Int. Tab. Vol. 4 : International Tables for X-ray Crystallography, Vol. IV, (1974) Kynoch Press, Birmingham, England. The following references may also be relevant. 3. ORTEP Plotting : Johnson, C.K., (1976) ORTEP - A Fortran Thermal Ellipsoid Plot Program, Technical Report ORNL-5138, Oak Ridge 4. Pluto Plotting : S. Motherwell, University Chemical Laboratory, Cambridge, 1978 5. Missing Symmetry Treatment by MISSYM : Le Page, Y., (1988) J. Appl. Cryst., 21, 983-984. 6. Grouping of Equivalent Reflections in DATRD2 : Le Page, Y. and Gabe, E.J., (1979) J. Appl. Cryst., 12, 464-466. 7. Extinction Treatment : Larson, A.C., (1970) p.293, Crystallographic Computing, Munksgaard, Copenhagen.

15-Nov-1997

Table	•	Atomio	c Parar	Parameters x,y,z			and Biso.		
		E.S.Ds.	refer	to	the	last	digit	printed.	

	Х	У	Z	Biso
01	0 1000 (2)	0 00000 (1 4)	0 02020 (0)	1 00 (0)
CI	0.1238(3)	0.00922(14)	0.93039(9)	1.98(8)
C2	0.1806(3)	-0.10855(15) -0.14129(16)	0.92348(9)	2.03(8)
C3	0.3720(3) 0.4341(3)	-0.14129(10) -0.24907(17)	0.94017(9)	2.29(0)
C5	0.4341 (3)	-0.24907(17) -0.32233(15)	0.93000(9)	2.44(9)
CS C6	0.2939(3) 0.1038(3)	-0.22138(15)	0.91000(9) 0.89975(9)	2.25(0)
C7	0.1030(3) 0.0425(3)	-0.18630(16)	0.00073(10)	2.20(0)
08	-0 00999(21)	-0.38103(11)	0.90200(10) 0.88551(7)	3 08 (6)
C9	0.1310 (3)	-0.46758(17)	0.87963(11)	2.90(9)
010	0.31094(21)	-0.43346(10)	0.91274(6)	2.94(6)
C11	0.1747 (3)	0.05729(15)	0.99958(9)	2.15(8)
012	0.37300(20)	0.08935(11)	1.01054(7)	2.52(6)
C13	0.0235 (3)	0.14851(15)	1.00647(10)	2.22(8)
014	0.03846(19)	0.22823(10)	1.04392(7)	2.65(6)
N15	-0.12614(25)	0.12918(14)	0.96502(8)	2.52(7)
C16	-0.1037 (3)	0.03113(16)	0.92486(10)	2.28(8)
C17	-0.1489 (3)	0.05137(19)	0.85189(10)	2.71(9)
C18	0.0386 (3)	0.10476(17)	0.82343(9)	2.48(8)
019	0.10433(21)	0.04550(13)	0.76619(7)	3.90(7)
C20	0.3150(3)	0.03487(19)	0.76834(10)	3.21(9)
021	0.364/0(19)	0.03801(13)	0.83/23(7)	3.30(6)
C22	0.2068 (3)	0.08409(17)	0.8/383(10)	2.19(8)
C23	0.4214 (4) 0.3718 (5)	0.1251(3)	0.73262(15) 0.7430(-3)	4.82(15) 7 35(21)
C24 C25	0.3710 (3)	-0.0701 (3) 0.22268(22)	0.7430(3) 0.80709(17)	7.33(ZI) 4.51(13)
С2.5 НЗ	0.0007 (3)	-0.0864 (13)	0.00709(17) 0.9530 (8)	23(4)
нэ н4	0.400 (3) 0.565 (3)	-0.2700(13)	0.9330(0) 0.9497(8)	19(4)
н7	-0.090 (3)	-0.1673 (14)	0.8905 (9)	2.3 (4)
H9a	0.080 (3)	-0.5332 (15)	0.9017 (9)	2.3 (4)
H9b	0.167 (3)	-0.4796 (14)	0.8297 (9)	2.5 (4)
H11	0.1465 (24)	0.0018 (12)	1.0348 (8)	0.9 (3)
H12	0.402 (4)	0.1472 (18)	0.9880 (11)	4.0 (6)
H15	-0.234 (3)	0.1743 (17)	0.9621 (11)	3.6 (5)
H16	-0.179 (3)	-0.0274 (14)	0.9439 (8)	1.3 (3)
H17a	-0.176 (3)	-0.0165 (15)	0.8304 (9)	2.0 (4)
H17b	-0.269 (3)	0.0967 (16)	0.8451 (9)	3.3 (5)
H22	0.249 (3)	0.1539 (15)	0.8922 (8)	1.8 (4)
H23a	0.380 (5)	0.1262 (24)	0.6889 (15)	8.0 (8)
H23b	0.564 (4)	0.1099 (18)	0.7311(10)	4.0 (5)
HZ3C	0.390 (5)	0.196(3)	0.7511 (14) 0.7750 (16)	7.3(9)
п24а u21h	0.302 (6)	-0.129 (3)	0.7750(10)	9.5 (IU) 6.3 (8)
H240	0.524 (4) 0.518 (6)	-0 0836 (23)	0.0940 (14) 0.7386 (15)	
H25a	-0.082 (4)	0.0030(23) 0.2275(22)	0.7300(13) 0.7726(13)	65(7)
H25b	-0.046 (4)	0.2600(17)	0.8475(11)	4.2 (6)
H25c	0.139 (4)	0.2651(19)	0.7978(10)	5.0 (6)

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid

Table of u(i,j) or U values *100. E.S.Ds. refer to the last digit printed

	u11(U)	u22	u33	u12	u13	u23
C1 C2 C3 C4 C5 C6 C7 08 C9 010 C11 012 C13 014 N15 C16 C17 C18 019 C20 021 C22 C23 C24 C25 H3 H4 H7 H9a H9b H11 H12 H15 H16 H17a H22 H23a H23b H23c H24c H25b H25c	$\begin{array}{c} 1.82(9)\\ 2.33(10)\\ 2.45(11)\\ 2.45(12)\\ 3.44(12)\\ 3.31(12)\\ 2.21(11)\\ 3.71(9)\\ 4.04(13)\\ 4.41(8)\\ 2.21(10)\\ 2.53(8)\\ 2.38(11)\\ 2.93(8)\\ 1.96(9)\\ 1.89(10)\\ 2.26(11)\\ 2.53(11)\\ 3.04(8)\\ 2.86(12)\\ 2.55(7)\\ 2.19(10)\\ 3.99(17)\\ 4.72(19)\\ 4.60(18)\\ 2.9(5)\\ 2.4(5)\\ 3.0(5)\\ 2.9(5)\\ 3.2(5)\\ 1.2(4)\\ 5.1(7)\\ 4.6(7)\\ 1.6(4)\\ 2.6(5)\\ 4.2(6)\\ 2.3(5)\\ 10.1(11)\\ 5.1(7)\\ 9.2(12)\\ 12.1(13)\\ 7.9(10)\\ 10.4(10)\\ 8.2(9)\\ 5.3(7)\\ 6.4(7)\\ \end{array}$	2.75(11) 3.04(11) 3.19(12) 3.89(13) 2.82(11) 3.12(11) 3.45(12) 3.21(8) 2.96(12) 2.67(8) 2.80(11) 3.24(8) 2.93(11) 3.07(8) 3.42(10) 2.84(11) 4.04(14) 3.99(13) 8.27(12) 5.45(14) 6.34(10) 2.80(11) 9.8(3) 9.0(3) 5.21(16)	2.95(10) 2.33(9) 3.05(11) 2.93(11) 2.23(10) 2.16(10) 2.94(11) 4.78(9) 4.03(13) 4.11(8) 3.14(10) 3.81(8) 3.14(11) 4.08(8) 4.21(10) 3.93(11) 4.00(12) 2.90(11) 3.53(8) 3.88(12) 3.66(8) 3.34(11) 4.56(16) 14.2(4) 7.32(21)	-0.17(8) -0.25(9) -0.29(10) 0.17(10) 0.17(9) -0.94(9) -0.94(9) -0.53(7) -0.49(11) 0.04(7) -0.13(8) -0.20(7) -0.33(9) -0.33(9) -0.38(9) 0.14(10) 0.11(10) -0.99(8) -0.94(11) 0.88(8) -0.07(9) -0.63(16) -2.16(19) 0.55(14)	-0.24(9) 0.09(8) -0.19(9) -0.19(9) 0.01(9) -0.07(9) -0.27(7) 0.45(11) -0.53(7) -0.21(9) -0.81(6) 0.34(9) 0.21(6) -0.10(8) 0.00(9) -0.53(10) -0.48(8) -0.35(7) 0.30(10) 0.74(7) -0.27(9) 0.26(13) 3.03(23) -1.50(17)	0.13(8) 0.19(8) 0.05(9) 0.28(9) 0.20(8) -0.19(8) 0.15(9) -0.53(7) -0.28(10) -0.28(10) -0.28(10) -0.48(6) -0.45(8) -0.45(8) -0.14(9) -0.15(10) 0.28(9) -1.41(8) -1.25(11) 1.76(7) 0.16(9) 3.00(18) -6.9(3) 2.26(15)

Anisotropic Temperature Factors are of the form Temp=-2*Pi*Pi*(h*h*ull*astar*astar+---+2*h*k*ul2*astar*bstar+---)

	DIS	SANG	· The N	RCVAX D:	istanc	ce an	id Ano	gle Progra	am	
The S	pace Gr	coup is	s P 21	21 21	Nor	nCent	rosy	mmetric		
The E	quivale	ent Pos	sitions	are:						
1)	Х	У	Z	2) 1	1/2+x	1/2	-y	-z		
3)	-x	1/2+y	1/2-z	4) 1	1/2-x		-у 3	1/2+z		
The L	attice	is Pri	mitive	. There	are n	no Ce	nter	ing Vector	îs	
C(1)-	C(2)	1.518((3)		N(15)	-H(1	5)	0.918(23)		
C(1)-	C(11)	1.550((3)		C(16)	-C(1	7)	1.517(3)		
C(1)-	C(16)	1.555((3)		C(16)	-H(1	6)	0.964(18)		
C(1)-	C(22)	1.569((3)		C(17)	-C(1	8)	1.533(3)		
C(2)-	C(3)	1.393((3)		C(17)	-H(1	7a)	0.963(19)		
C(2)-	C(7)	1.406((3)		C(17)	-H(1	7b)	0.992(23)		
C(3)-	C(4)	1.402((3)		C(18)	-0(1	9)	1.4339(25	5)	
C(3)-	Н(З)	0.959(18)		C(18)	-C (2	2)	1.538(3)		
C(4)-	C(5)	1.370((3)		C(18)	-C (2	5)	1.517(3)		
C(4)-	H(4)	0.950(19)		0(19)	-C(2	0)	1.421(3)		
C(5)-	C(6)	1.376(3)		C(20)	-0(2	1)	1.4228(25	5)	
C(5)-	0(10)	1.3868	8(23)		C(20)	-C(2	3)	1.510(4)		
C(6)-	C(7)	1.369(3)		C(20)	-C(2	4)	1.518(4)		
C(6)-	0(8)	1.3799)(23)		0(21)	-C(2	2)	1.4107(24	1)	
C (7) -	H (7)	0.949(21)		C(22)	-H(2	2)	0.983(19)		
0(8)-	C(9)	1.437(3)		C(23)	-H(2	(3a)	0.92(3)		
C(9)-	O(10)	1.442 (3)		C(23)	-H(2	(36)	0.98(3)		
C(9) -	H(9a)	0.989(19)		C(23)	-H(2	3C)	0.98(3)		
C(9) - C(11)	H(9D)	1.043((22)		C(24)	-H(2	4a)	1.03(4)		
C(11)	-0(12)	1.4068	5 (∠3) Z2)		C(24)	-H(2	40)	1.03(3)		
C(11)	-C(13)	1.02/(() (16)		C(24)	-п(2	4C)	0.99(4)		
C(11)	-n(11)	1.005((10) (10)		C(25)	-n(2	5b)	0.91(3)		
C(12)	$-\Pi(12)$	1 2160	(24)		C(25)	-n(2	(JD)	1 0.990(24)		
C(13)	-0(14)	1 326/	(24)		U(23)	ב) 11 – 1 ע_	2321	1.03(3) 1.51(4)		
N(15)	-R(15)	1 1680	(3)		II (23a	1) — II (5) — II (230)	1.51(4) 1.52(4)		
м(тэ)	C(10)	1.400(11 (2.56	i) II (250)	1.52(4)		
C(2) =	C(1) - C	(11)	113 42	(15)		C (1	7) - C	(16) -H (16)		113 7 (9)
C(2) =	C(1) - C(1)	(16)	114 14	(15)		C(1)	6) - C	(17) - C(18)		$105 \ 46(16)$
C(2) -	C(1) - C	(22)	114.54	(15)		C(1	6) -C	(17) - H(17a)	a)	108.9(10)
C(11)	-C(1)-C	C(16)	102.31	(14)		C(1	6) -C	(17) -H(17k	-,)	112.9(11)
C(11)	-C(1)-C	(22)	109.97	(15)		C(1	.8)-C	(17) -H (17a	, 1)	111.4(11)
C(16)	-C(1)-C	C(22)	101.16	(14)		C(1	8)-C	(17) -H (17k))	111.7(12)
C(1)-	C(2)-C	(3)	119.46	(16)		Н(1	7a)-0	С(17)-Н(17	7b)	106.4(16)
C(1)-	C(2)-C	(7)	121.58	(17)		C(1	7)-C	(18) - 0(19)		109.22(17)
C(3)-	C(2)-C	(7)	118.94	(18)		C(1	7)-C	(18)-C(22)		106.62(16)
C(2)-	C(3)-C	(4)	122.61	(19)		C(1	7)-C	(18)-C(25)		112.24(20)
C(2)-	С(З)-Н	(3)	117.3(10)		0(1	9)-C	(18)-C(22)		102.43(15)
C(4)-	С(З)-Н	(3)	120.0(10)		0(1	9)-C	(18)-C(25)		111.53(19)
C(3)-	C(4)-C	(5)	116.51	(19)		C (2	2)-C	(18)-C(25)		114.22(20)
C(3)-	С(4)-Н	(4)	121.3(10)		C(1	8)-0	(19)-C(20)		109.24(14)
C(5)-	С(4)-Н	(4)	122.2(10)		0(1	9)-C	(20)-0(21)		105.09(15)
C(4)-	C(5)-C	(6)	121.66	(18)		0(1	9)-C	(20)-C(23)		112.81(21)
C(4)-	C(5)-O	(10)	128.38	(18)		0(1	9)-C	(20)-C(24)		108.93(20)
C(6)-	C(5)-O	(10)	109.89	(17)		0(2	1)-C	(20)-C(23)		109.27(20)
C(5)-	C(6)-C	(7)	122.48	(18)		0(2	1)-C	(20)-C(24)		106.9(3)
C(5)-	C(6)-O	(8)	109.85	(17)		C (2	3)-C	(20) -C (24)		113.3(3)
C(7)-	C(6)-O	(8)	127.53	(19)		C (2	0)-0	(21)-C(22)		109.93(15)
C(2)-	C(7)-C	(6)	117.79	(19)		C(1) –C (2	22)-C(18)		108.28(16)

С(2)-С(7)-Н(7)	121.4(10)	C(1)-C(22)-O(21)	113.78(16)
С(6)-С(7)-Н(7)	120.7(10)	С(1)-С(22)-Н(22)	110.7(10)
C(6)-O(8)-C(9)	104.81(15)	C(18)-C(22)-O(21)	106.08(15)
O(8)-C(9)-O(10)	107.11(15)	С(18)-С(22)-Н(22)	108.0(10)
O(8)-C(9)-H(9a)	110.5(11)	O(21)-C(22)-H(22)	109.7(10)
O(8)-C(9)-H(9b)	109.9(10)	С(20)-С(23)-Н(23а)	108.6(19)
O(10)-C(9)-H(9a)	109.2(10)	С(20)-С(23)-Н(23b)	109.6(13)
O(10)-C(9)-H(9b)	106.8(11)	С(20)-С(23)-Н(23с)	112.6(18)
H(9a)-C(9)-H(9b)	113.2(14)	H(23a)-C(23)-H(23b)	105.7(22)
C(5)-O(10)-C(9)	104.45(15)	H(23a)-C(23)-H(23c)	106(3)
C(1)-C(11)-O(12)	117.24(15)	H(23b)-C(23)-H(23c)	113.3(23)
C(1)-C(11)-C(13)	102.72(15)	C(20)-C(24)-H(24a)	104.6(19)
C(1)-C(11)-H(11)	108.9(8)	С(20)-С(24)-Н(24b)	94.3(15)
O(12)-C(11)-C(13)	113.90(15)	С(20)-С(24)-Н(24с)	111.4(17)
O(12)-C(11)-H(11)	105.2(9)	H(24a)-C(24)-H(24b)	123.8(25)
C(13)-C(11)-H(11)	108.6(9)	H(24a)-C(24)-H(24c)	116(3)
C(11)-O(12)-H(12)	111.4(15)	H(24b)-C(24)-H(24c)	103.7(23)
C(11)-C(13)-O(14)	126.12(17)	C(18)-C(25)-H(25a)	108.8(17)
C(11)-C(13)-N(15)	108.21(16)	С(18)-С(25)-Н(25b)	108.9(13)
O(14)-C(13)-N(15)	125.66(18)	С(18)-С(25)-Н(25с)	113.5(12)
C(13)-N(15)-C(16)	114.62(17)	H(25a)-C(25)-H(25b)	111.1(21)
C(13)-N(15)-H(15)	121.9(13)	H(25a)-C(25)-H(25c)	112.4(21)
C(16)-N(15)-H(15)	123.5(13)	Н(25b)-С(25)-Н(25с)	102.0(17)
C(1)-C(16)-N(15)	101.94(15)	С(23)-Н(23а)-Н(23b)	38.5(15)
C(1)-C(16)-C(17)	107.14(16)	С(23)-Н(23а)-Н(23с)	38.0(17)
С(1)-С(16)-Н(16)	110.8(10)	H(23b)-H(23a)-H(23c)	65.1(19)
N(15)-C(16)-C(17)	111.85(17)	С(23)-Н(23b)-Н(23а)	35.8(14)
N(15)-C(16)-H(16)	110.7(10)	С(23)-Н(23с)-Н(23а)	35.5(16)

Torsion angles

C11	C1	C2	C3	-51.00(24)	C11	C1	C2	С7	127.5(4)
C16	C1	C2	C3	-167.7(4)	C16	C1	C2	C7	10.85(19)
C2Z	C1	C2 C11	012	76.4(3) 80.6(3)	C22	C1	C2 C11	C13	-105.1(3) -153.7(4)
C2	C1	C11	H11	-38.7(15)	C16	C1	C11	012	-156.0(4)
C16	C1	C11	C13	-30.28(20)	C16	C1	C11	H11	84.8(16)
C22	C1	C11	012	-49.10(21)	C22	C1	C11	C13	76.6(3)
C22	C1	C11	H11	-168.4(16)	C2	C1	C16	N15	152.3(4)
C2	C1	C16	C17	-90.1(3)	C2	C1	C16	H16	34.4(17)
C11		C16	NIS H16	29.38(19)	C11 C22	CI C1	C16	C17 N15	-84.2(3)
C22	C1	C16	C17	33.45(21)	C22	C1	C16	H16	158.0(18)
C2	C1	C22	C18	100.3(3)	C2	C1	C22	021	-17.32(16)
C2	C1	C22	H22	-141.4(18)	C11	C1	C22	C18	-130.5(4)
C11	C1	C22	021	111.8(3)	C11	C1	C22	H22	-12.3(17)
C16	C1	C22	C18	-22.91(19)	C16	C1	C22	021	-140.6(4)
C16	C_2	CZZ	HZZ H3	95.3(18) -3.7(18)	CI C7	C_2	C3	C4	-0.40(20)
C7	C2 C2	C3	H3	177.7(19)	C1	C2	C7	C6	-177.4(4)
C1	C2	C7	Н7	1.0(19)	C3	C2	C7	C6	1.09(19)
С3	C2	C7	H7	179.5(20)	C2	C3	C4	C5	-0.55(19)
C2	C3	C4	H4	-178.2(19)	HЗ	C3	C4	C5	-178.6(19)
H3	C3	C4	H4	4. (3)	C3	C4	C5	C6	0.82(19)
СЗ цл	C4 C4	C5	010	-1/6.0(4)	H4 C4	C4 C5	C5 C6	C6 C7	1/8.4(19)
C4	C4 C5	C6	010	-176.2(4)	010	C5	C6	C7	177.2(4)
010	C5	C6	08	1.14(14)	C4	C5	010	C9	-171.9(4)
C6	C5	010	С9	11.01(21)	C5	C6	С7	C2	-0.85(19)
С5	C6	С7	H7	-179.3(20)	08	C6	С7	C2	174.4(4)
08	C6	C7	H7	-4.0(19)	C5	C6	08	C9	-12.84(21)
C A	08	08 C9	С9 нор	1/1.4(4) 138 2(19)	C6	08	C9 C9	идр UIU	19.46(17) -96.2(18)
08	C9	010	C5	-18.72(18)	H9a	C9	010	C5	-138.3(19)
H9b	C9	010	C5	99.0(18)	C1	C11	012	H12	71. (3)
C13	C11	012	H12	-49. (3)	H11	C11	012	H12	-167. (3)
C1	C11	C13	014	-158.7(4)	C1	C11	C13	N15	20.53(18)
012	C11	C13	014	-30.83(18)	012	C11	C13	N15	148.4(4)
C11	C11	C13 N15	C16	80.1(10) -1 18(18)	C11	C11	U13 N15	NIJ H15	-94.7(10) 179.0(24)
014	C13	N15	C16	178.0(4)	014	C13	N15	H15	-1.8(24)
C13	N15	C16	C1	-18.57(19)	C13	N15	C16	C17	-132.7(4)
C13	N15	C16	H16	99.3(18)	H15	N15	C16	C1	161.3(24)
H15	N15	C16	C17	47.1(24)	H15	N15	C16	H16	-81. (3)
C1	C16	C17	C18 U17b	-31.80(20)	Cl N1 E	C16	C17	H17a	87.9(19)
N15	C16	C17	ні/р н17а	-154.1(21) -161.2(19)	N15	C16	C17	сто H17b	-43 2(21)
H16	C16	C17	C18	-154.5(18)	H16	C16	C17	H17a	-35. (3)
H16	C16	C17	H17b	83. (3)	C16	C17	C18	019	126.3(4)
C16	C17	C18	C22	16.33(19)	C16	C17	C18	C25	-109.4(4)
H17a	C17	C18	019	8.3(19)	H17a	C17	C18	C22	-101.7(19)
H17a U17b	C17	C18	C25	132.5(19)	H17b	C17	C18	019	-110.6(21)
пт/р С17	C18	019	C22	139.4(21) -137 5(4)	лі/Д С22	C18	019	C20	$\pm 3.0(2\pm)$ -24 73(21)
C25	C18	019	C20	97.9(4)	C17	C18	C22	C1	4.68(18)
C17	C18	C22	021	127.2(4)	C17	C18	C22	H22	-115.2(18)
019	C18	C22	C1	-110.0(3)	019	C18	C22	021	12.48(15)

019	C18	C22	H22	130.1(18)	C25	C18	C22	C1	129.3(4)
C25	C18	C22	021	-108.3(4)	C25	C18	C22	H22	9.4(18)
C17	C18	C25	H25a	-67. (3)	C17	C18	C25	H25b	54.3(23)
C17	C18	C25	H25c	167.1(23)	019	C18	C25	H25a	56. (3)
019	C18	C25	H25b	177.3(24)	019	C18	C25	H25c	-69.9(22)
C22	C18	C25	H25a	172. (3)	C22	C18	C25	H25b	-67.2(23)
C22	C18	C25	H25c	45.6(22)	C18	019	C20	021	27.81(19)
C18	019	C20	C23	-91.1(4)	C18	019	C20	C24	142.1(5)
019	C20	021	C22	-18.99(18)	C23	C20	021	C22	102.3(4)
C24	C20	021	C22	-134.7(5)	019	C20	C23	H23a	-59. (3)
019	C20	C23	H23b	-173.6(24)	019	C20	C23	H23c	59. (3)
021	C20	C23	H23a	-175. (3)	021	C20	C23	H23b	69.9(24)
021	C20	C23	H23c	-57. (3)	C24	C20	C23	H23a	66. (3)
C24	C20	C23	H23b	-49.2(24)	C24	C20	C23	H23c	-176. (3)
019	C20	C24	H24a	-60. (3)	019	C20	C24	H24b	67. (3)
019	C20	C24	H24c	173. (3)	021	C20	C24	H24a	53. (3)
021	C20	C24	H24b	180. (3)	021	C20	C24	H24c	-74. (3)
C23	C20	C24	H24a	173. (3)	C23	C20	C24	H24b	-60. (3)
C23	C20	C24	H24c	47. (3)	C20	021	C22	C1	122.8(3)
C20	021	C22	C18	3.85(20)	C20	021	C22	H22	-112.6(18)
C20	C23	H23a	H23b	-118. (4)	C20	C23	H23a	H23c	122. (4)
H23b	C23	H23a	H23b	0. (3)	H23b	C23	H23a	H23c	-121. (5)
H23c	C23	H23a	H23b	121. (6)	H23c	C23	H23a	H23c	0. (4)
C20	C23	H23b	H23a	117. (3)	H23a	C23	H23b	H23a	0. (4)
H23c	C23	H23b	H23a	-116. (5)	C20	C23	H23c	H23a	-119. (4)
H23a	C23	H23c	H23a	0. (4)	H23b	C23	H23c	H23a	116. (5)
C23	H23a	H23b	C23	0.0(6)	H23c	H23a	H23b	C23	36. (3)
C23	H23a	H23c	C23	0.0(6)	H23b	H23a	H23c	C23	-36. (3)